Global dimming, a gradual reduction in the amount of global direct irradiance at the Earth's surface, has partially counteracted global warming from 1960 to the present.The main cause of this dimming is aerosols produced by volcanoes and pollutants. These aerosols exert a cooling effect by increasing the reflection of incoming sunlight. The effects of the products of fossil fuel combustion—CO2 and aerosols—have largely offset one another in recent decades, so that net warming has been due to the increase in non-CO2 greenhouse gases such as methane.Radiative forcing due to aerosols is temporally limited due to wet deposition which causes aerosols to have anatmospheric lifetime of one week. Carbon dioxide has a lifetime of a century or more, and as such, changes in aerosol concentrations will only delay climate changes due to carbon dioxide.
In addition to their direct effect by scattering and absorbing solar radiation, aerosols have indirect effects on the radiation budget. Sulfate aerosols act as cloud condensation nuclei and thus lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets. This effect also causes droplets to be of more uniform size, which reduces growth of raindrops and makes the cloud more reflective to incoming sunlight.Indirect effects are most noticeable in marine stratiform clouds, and have very little radiative effect on convective clouds. Aerosols, particularly their indirect effects, represent the largest uncertainty in radiative forcing.
Soot may cool or warm the surface, depending on whether it is airborne or deposited. Atmosphericsoot aerosols directly absorb solar radiation, which heats the atmosphere and cools the surface. In isolated areas with high soot production, such as rural India, as much as 50% of surface warming due to greenhouse gases may be masked by atmospheric brown clouds. Atmospheric soot always contributes additional warming to the climate system.
No comments:
Post a Comment